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Summary. In the first part of this contribution we outline the construction of 
a novel matrix associated with a graph, the entries of which give the probability of 
a random walk over the graph G starting at site i to reach site j in Dii steps. Here 
D u is the distance between vertices i, j. The derived matrices, to be referred to as 
restricted random walk matrices and labeled as RRW matrices, are non-symmetric, 
for trees the entries being of the form 1/p, where p is an integer equal to 1 or larger. 
In the second part of the report we consider a few invariants of the RRW matrices. 
We will illustrate the use of one such invariant in a regression analysis. We consider 
the variations of the entropies in isomeric octanes with skeletal changes. The 
derived regression, based on a single descriptor, yields the standard error of 
1.26 cal K -  x mo l -  1 that is the smallest yet reported in the literature. 
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1 Introduction 

Recently we initiated a systematic search for the matrices that can be associated 
with molecular graphs and serve as a source for the construction of novel graph 
invariants that may be of use in structure-property analysis. This effort resulted in 
several novel matrices of potential interest in structure-property-activity studies. 
The Wiener matrix [1] is based on a particular generalization of a partitioning 
of the Wiener number [21 a widely used molecular topological descriptor. The 
Hosoya matrix [3] was similarly derived by partitioning Hosoya's Z number [4], 
another important  topological index. In yet another study, which applies 
to graphs embedded on regular grids (in two or three dimensions, such as 
the graphite network or diamond grid, respectively) the notions of the geo- 
metrical and the topological distance were combined in producing novel 
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matrices that show some promise in the characterization of different molecular 
conformations [5]. 

In this paper we will outline the construction of yet another novel matrix 
associated with graphs, the elements of which are determined by considering 
random walks. A selected invariant of such matrices shows considerable promise in 
structure-property studies. 

2 Motivation 

The interest in novel matrices associated with graphs originates with a hope that 
some such matrix can generate structural invariants that can improve on the 
existing simple and multiple regressions for different structural properties. Recently 
we have reported some 750 regressions derived for the 18 isomers applied to some 
20 physicochemical properties and tested some 40 molecular (mathematical) de- 
scriptors in simple regressions (based on a single independent variable) [6]. The 
results of this rather ambitious survey of simple structure-property regressions 
revealed several interesting points. First, from the pool of some 40 descriptors at 
most half a dozen (and few combinations of these descriptors) emerged again and 
again as the best molecular descriptors. These best descriptors include the connect- 
ivity index ;~ [7], the Hosoya Z topological index [4] and the Wiener number 
W [2]. Another interesting result of the survey is the finding that for some 
molecular properties many descriptors can produce a fair regression, while for 
other properties none of the 40 descriptors (as a single variable) gives a satisfactory 
regression. The Pitzer acentric factor [8] is an example of the former, and the 
critical temperatures and the critical pressures are an illustration of the latter. We 
should emphasize that the above analysis was confined to molecules of the same 
size (i.e., having the same number of carbon atoms and CC bonds). Variations of 
the properties within such a group demand that the descriptors are sensitive to 
variations in the skeletal branching. It is generally not difficult to design descriptors 
that will adequately describe the dominant role of the molecular size on the 
properties. Variations of the properties with the molecular shape are much more 
difficult to account for [9]. 

Hence, there is a continuing interest in the search for novel molecular 
descriptors. One hopes that such a search may result in the design of descriptors 
that show a significant improvement over the performance of the earlier de- 
scriptors. Although regression analysis does not produce a causal relationship, the 
use of theoretical descriptors may signal structural components that are 
relevant for a particular molecular property and this may contribute to better 
molecular models. However, the challenges ahead for those interested in the 
design of novel structural descriptors are considerable. It is not sufficient just to 
announce a novel descriptor, the designer should also demonstrate that a 
novel descriptor can yield a better, simple or multiple, regression than given by 
the existing descriptors, while the descriptor still has a relatively simple structural 
interpretation. That indeed this is not to be an easy task has been confirmed 
by recent work of Kartizky and Gordeeva [10] who screened a large number of 
topological indices in analyzing several structure-activity relationships and 
have again found the same "classic" descriptors (the connectivity index, the 
Hosoya Z index and the Wiener W number) as the dominant molecular 
descriptors. 
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3 Restricted random walks 

A random walk (or sometimes also referred to as a drunkard's walk) along a one- 
dimensional path that is divided into n segments starts at one point and using 
chance process continues (left or right), segment by segment, until it reaches either 
of the limiting ends of the path [11]. It can be easily generalized to two dimensional 
networks, and even higher-dimensional grids, with several end points. The problem 
to solve in such cases is that of finding the probability, starting at any of the 
segments (or crossroads in the case of two dimensions), that a walker will reach one 
of the ends (home or a bar in the case of a drunkard!). There are no restrictions on 
the number of steps required to reach either of the end sites. 

We will, however, consider random walks over graphs but will restrict the 
number of steps that are allowed. The restriction we impose on the number of steps 
is determined by the distance of the vertices considered, as will be illustrated below. 
Besides the probabilities for restricted random walks between vertices i and j, 
a related idea is to consider unrestricted random walks, which can be defined as 

~the probability that a random walk leaving site i 
P i - . j  = [will reach site j before returning to i. 

As noted in [11, 54] this is just the inverse of the resistance (or resistance distance 
[12]) between i and j. The matrix of Pi - , j  = 1/(2ij has already been noted as 
a possibly interesting characteristic for molecular graphs [13]. 

Let us outline our approach for the graph of 2-methylpentane: 

c 

As we have said, the number of steps in a random walk is restricted by the distance 
of the vertices considered. For example, if we start at vertex 1 and want to arrive at 
vertex 4, which is three bonds away, we allow only random walks of length three. 
For smaller molecules, such as 2-methylpentane, we can list all such walks and find 
the required probability by brute force. Thus, by starting at vertex 1 the following 
are all the possible walks having length three: 

1-2-3-4; 1-2-3-2; 1-2-6-2; 1-2-i-2. 

Hence, in all, there are four such walks, but only one (1-2-3-4) indicates 
a success: thus the probability for reaching vertex 4 starting from 1 in three steps is 
1/4. If we consider the reverse of this, the probability of reaching vertex 1 starting 
from vertex 4 (in three steps), we have the following possible walks: 

z 

4-3-2-1; 4-3-2-6;  4-3-2-3; 4-3-4-3;  4-3-4-5; 4-5-4-3; 4-5-4-5.  

Now in all there are seven walks, one of which represents a success; hence the 
probability is 1/7. 

By this process we were able to assign to a pair of vertices ( i , j )  a number; hence 
we can now build a matrix with the entries in such a matrix given by the calculated 
probabilities. Thus in the case of 2-methylheptane for the element (1, 4) we have 1/4 
and for the element (4, 1) we have 1/7. We will refer to such matrices as restricted 
random walk or RRW matrices and will in the next section illustrate a few such for 
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the selected isomers of octane in order to show the form of RRW matrices. Observe 
that the derived matrices are not symmetric. 

4 Illustrations 

In Table 1 we show RRW matrices for n alkanes and in Table 2 we show RRW 
matrices for four (out of  18) isomers of octane. In general, the largest entries in each 
row or column are those close to the main diagonal. The RRW matrices for 
n-alkanes are centrosymmetric, i.e., an element (i,j) is equal to element 
(n + 1 - i, n + 1 - j ) ,  which would have the same labels if we would reverse the 
labeling of the rows and the columns, i.e., if we would count rows from the right and 

Table 1. The restricted random walks matrices for n-alkanes 

n-propane 

0 1 1/21 
7/ 1/2 1 

n-butane 

0 1 1/2 1/3\ 
/ 

1/2 0 1/2 1/3[ 
/ 

, :  o 

o/ 1/3 1/2 1 

n-pentane 
L 

0 1 1/2 I/3 1/6 / 
| 

1/2 0 1/2 1/3 1/6[ 
/ 

1/4 1/2 0 1/2 1/4 / 
/ 

1 /6  1 /3  1 /2  0 1/2 I 
o] 1/6 1/3 1/2 1 

n-hexane 

0 1 1/2 1/3 1/6 1/10 ~ 

1/2 0 1/2 1/3 1/6 1/10 

1/4 1/2 0 1/2 1/4 1/7 

1/7 1/4 1/2 0 1/2 1/4 

1/10 1/6 1/3 1/2 0 1/2 

1/10 1/6 1/3 1/2 1 0 

n-heptane 
0 1 1/2 1/3 1/6 1/10 1/20 I 

1/2 0 1/2 1/3 1/6 1/10 1/20 

1/4 1/2 0 1/2 1/4 1/7 1/14 

1/8 1/4 1/2 0 1/2 1/4 1/8 

1/14 1/7 1/4 1/2 0 1/2 1/4 

1/20 1/10 1/6 1/4 1/2 0 1/2 

1/20 1/10 1/6 1/4 1/2 1 0 

octane 

0 i 1/2 i/3 I/6 1/10 1/20 1/35 
i/2 0 1/2 I/3 i/6 1/10 1/20 1/35 
i/4 i/2 0 i/2 i/4 i/7 1/14 1/25 
i/8 i/4 i/2 0 i/2 i/4 I/8 1/15 

1/15 1/8 1/4 1/2 0 1/2 1/4 1/8 
1/25 1/14 1/7 1/4 1/2 0 1/2 1/4 
1/35 1/20 1/10 1/6 1/3 1/2 0 1/2 
1/35 1/20 1/10 1/6 1/3 1/2 1 0 
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columns from the bottom. There are some other regularities to be observed. In the 
case of n-alkanes, as we move along each of the diagonals parallel to the main 
diagonal of the matrix the entries decrease. After they reach the value 1/2 a they 
remain constant. Here d is the "distance" of the diagonals from the main diagonal. 

Table 2. The restricted random walks matrices for several octane isomers 

2-methylheptane 

0 1 1/3 1/4 1/11 1/16 1/42 1/3 
1/3 0 1/3 1/4 1/11 1/16 1/42 1/3 
1/5 1/2 0 1/2 1/5 1/8 1/20 1/5 
1/9 1/4 1/2 0 1/2 1/4 1/9 1/9 

1/15 1/7 1/4 1/2 0 1/2 1/4 1/15 
1/21 1/10 1/6 1/3 1/2 0 1/2 1/21 
1/21 1/10 1/6 1/3 1/2 1 0 1/21 
1/3 1 1/3 1/4 1/11 1/16 1/42 0 

2,3-dimethylhexane 

0 1 1/3 1/5 1/12 1/23 1/3 1/5 
1/3 0 1/3 1/5 1/12 1/23 1/3 1/5 
1/6 1/3 0 1/3 1/6 1/13 1/6 1/3 
1/9 1/6 1/2 0 1/2 1/6 1/9 1/6 

1/12 1/7 1/3 1/2 0 1/2 1/12 1/7 
1/12 1/7 1/3 1/4 I 0 1/12 1/7 
1/3 1 1/3 1/5 1/12 1/23 0 1/5 
1/6 1/3 1 1/3 1/6 1/13 1/6 0 

2-methyl-3-ethylpentane 

0 1 1/3 1/5 1/13 1/3 1/5 1/13 
2/3 0 1/3 1/5 1/13 1/3 1/5 1/13 
1/7 1/3 0 1/3 1/7 1/7 1/3 1/7 
1/9 1/4 1/2 0 1/2 1/9 1/4 1/9 
1/9 1/4 1/2 1 0 1/9 1/4 1/9 
1/3 1 1/3 1/5 1/13 0 1/5 1/13 
1/9 1/4 1/2 1/4 1/9 1/9 0 1/2 
1/9 1/4 1/2 1/4 1/9 1/9 1 0 

2,3,3-timethylpentane 

0 1 1/3 1/6 1/13 1/3 1/6 1/6 
1/3 0 1/3 1/6 1/13 1/3 1/6 1/6 
1/7 1/4 0 1/4 1/7 1/7 1/4 1/4 
1/9 1/5 1/2 0 1/2 1/9 1/5 1/5 
1/9 1/5 1/2 1 0 1/9 1/5 1/5 
1/3 1 1/3 1/6 1/13 0 1/6 1/6 
1/7 1/4 1 1/4 1/7 1/7 0 1/4 
1/7 1/4 1 1/4 1/7 1/7 1/4 0 



102 M. Randi6 

Brute force calculation of the matrix elements for RRW is error prone. To 
obtain the elements of the RRW matrix we find it best to construct the adjacency 
matrix first and then calculate A" powers of the adjacency matrix that contain 
information on the number of walks of length n for every vertex [14]. From the 
higher powers of A one can extract the number of walks of any length, and hence 
construct the RRW matrix. For example, to obtain the elements (1, 4) and (4, 1) for 
RRW of 2-methylpentane we raise the adjacency matrix of 2-methylpentane to the 
third power and construct the row sums for row 1 and row 4, respectively: 

A A 3 

0 1 0 0 0 0 t 

1 0 1 0 0 1 

0 1 0 1 0 0 

0 0 1 0 1 0 

0 0 0 1 0 0 

0 1 0 0 0 0 

0 3  0 1 0 0 '  

2 0 4 0 2  1 

0 4 0 3 0 0  

1 1 3 0 2 0  

0 1 0 2 0 0  

0 3  0 1 0 0  

Row 

Sum 

4 

9 

7 

7 

3 

4 

We see that the row sums, which give the count of all walks starting at the vertex 
for the selected row, for vertex 1 and vertex 4 give values 4 and 7, respectively. 
From the matrix A 3 we can obtain the elements for RRW for all pairs of vertices 
separated by three bonds. Thus, in addition to (1, 4) and (4, 1) we can also extract 
the following entries of RRW of 2-methylheptane: 

(2,5)=1/9, (5, 2)=1/3  and (4, 6)=1/7, (6,4)=1/4. 

The algorithm for construction of the RRW matrices thus is based on infor- 
mation from the adjacency matrix and the distance matrix. The powers of the 
adjacency matrix give walks of increasing length, while the elements of the distance 
matrix indicate the restrictions on the length of the walks. A computer program 
that implements such an algorithm is under preparation [15]. 

5 RRW matrix invariants 

Once a matrix is assigned to a graph one can extract various invariants from such 
a matrix to be tested as potential molecular descriptors. Besides the standard 
matrix invariants such as the eigenvalues (spectrum), the determinant, and the 
coefficients of the characteristic polynomial, these also include path additive 
quantities. These are constructed in the following way; identify for the molecular 
graph considered all paths of length 1 (i.e. bonds) and add all such contributions. 
Next, consider all paths of length 2 (two consecutive bonds) and add all entries in 
the matrix corresponding to such. Continue the process for ever-increasing path 
lengths until all entries are exhausted. For n-alkanes construction of such path 
additive quantities is particularly simple because (with the natural numbering) 
vertices at the same distance are located along the diagonals parallel to the main 
diagonal. All adjacent vertices have entries next to the main diagonal, contribu- 
tions to paths of length two are located on the second diagonal parallel to the main 
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diagonal, and so on. Thus in the case of n-octane we have: 

Paths of length 1:R1 = 2(1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2) = 8.00000 

paths of length 2:R2 = 2(1/2 + 1/3 + 1/4 + 1/4 + 1/4 + 1/4) = 3.66667 

paths of length 3:R3 = 2(1/3 + 1/6 + 1/7 + 1/8 + 1/8) = 1.78571 

8 7 

1 3 5 7 

8 

6 6 

I 7 5 7 8 Fig. 1. Labeling of vertices in selected 
isomers of octane 

Table 3. The path additive sequences for the 18 isomers of octane. The last entry for each molecule gives 
the sum of all the path numbers and correspond to the path identification number 

n-octane 2M 3M 4M 3E 22MM 

Ro 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 
R1 3.66667 4.01667 4.00000 3.93333 4.03333 4.45000 
R2 1.78571 1.69210 2.09841 2.04194 2.41819 1.60000 
R3 0.80952 0.69432 0.75146 1.00709 1.07003 0.62500 
R,  0.38000 0.34405 0.37527 0.25589 0.28431 0.37500 
R5 0.18000 0.14285 0.08333 0.07407 
R6 0.02857 

IDR 14.85047 14.97999 15.30847 15.31232 15.80586 15.05000 

23MM 24MM 25MM 33MM 34MM 2M3E 

Ro 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 
R1 4.23333 4.31667 4.43667 4.33333 4.33333 4.430476 
R2 2.30153 1.97448 1.62626 2.26374 2.65385 2.62051 
R3 0.73945 0.80651 0.59893 0.73026 0.77149 0.97436 
R4 0.25362 0.23529 0.47059 0.08333 0.11765 

IDR 15.52793 15.33295 15.06245 15.51066 15.87632 15.89963 

3M3E 223MMM 224MMM 233MMM 234MMM 2233MMMM 

Ro 8.00000 8.00000 8.00000 8.00000 8.00000 8.00000 
R1 4.47857 4.82143 4.74762 4.86190 4.70476 5.35714 
R2 2.389524 2.45739 1.43603 2.75629 2.47912 2.57143 
R3 0.66667 0.49123 0.77733 0.37607 0.61538 

IDR 16.04048 15.77005 14.96098 15.99426 15.79926 15.92857 



104 M. Randi~ 

4.47 

4.43 4.70 
4.30 

4.03 I 4.23 4.43 

4.86 

4.82 

0 
5.53 

i.39 ~) 4.31 
1.00 

3.66 4.01 4.36 4.45 4.74 

Fig. 2. The plot of R~ on the P2, P3 
coordinate grid 

16.04 

15.87 I 15.79 
15.89 

15.80 

,,==.,..= 
15.31 
15.30 

q 

'~ 15,99 

15.52 15.51 

15.33 

15.77 

14.85 4.97 15.06 15.05 14.96 

0 
15.92 

Fig. 3. The plot of the 
identification number IDR on the 
P2, P3 coordinate grid 

and so on. Figure 1 shows the labeling of vertices in selected isomers of octane. In 
Table 3 we give the corresponding path sequences for the 18 isomers of octanes. The 
last entry for each molecule is the sum of all lengths. The numbers correspond to 
the molecular ID (identification) number [16], although these were introduced for 
different matrices initially. The first entry in the path sequences gives the number of 
vertices (and is constant for isomers). The second entry represents a bond additive 
quantity and is reminiscent of the connectivity index (which is also bond additive). 
Both, the bond additive R1 and the IDR number show a regular variation for the 
isomers if plotted on the Pz, P3 coordinate grid, a suggested template to detect the 
regularities in isomeric variations [17], as illustrated in Figs. 2 and 3. 

6 Isomeric variation of entropy 

In Table 4 we show the experimental entropies for the isomers of octanes (the 
second column). In Fig. 4 we plot the experimental entropy against the bond 
additive invariant R1, whence a rather satisfactory regression results: 

entropy (calK -1 mo1-1) = - 11.028 R1 + 153.679 
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Table 4. The experimental entropies of the octane isomers, the calculated entropies and 
the differences. The experimental values were taken from referto calorimetric values of 
entropies in cal K- 1 tool- 

Isomer Entropy (exp.) Entropy (calc.) Difference 

n-octane 111.67 113.243 -- 1.57 
2M 109.84 109.384 + 0.46 
3M 111.26 109.567 + 1.69 
4M 109.32 110.303 - 0.98 
3E 109.43 109.200 + 0.23 
22MM 109.42 104.605 - 1.18 
23MM 108.02 106.994 + 1.03 
24MM 106.98 106.075 + 0.90 
25MM 105.72 105.524 + 0.20 
33MM 104.74 104.789 - 0.05 
34MM 106.51 105.89 + 0.62 
2M3E 106.06 106.207 - 0.15 
3M3E 101.48 104.290 - 2.81 
223MMM 101.31 100.509 + 0.80 
224MMM 101.09 101.323 - 0.23 
233MMM 102.06 100.062 + 2.00 
234MMM 102.39 101.795 + 0.59 
2233MMMM 93.06 94.601 -- 1.54 

120  

100  

Q°.6 I I [ I I I " i 
3 . 8  4 . 0  4 . 2  4 , 4  4 . 6  4 , 8  5 . 0  5 . 2  5 . 4  

R1 

Fig. 4. The plot of the experimental 
entropies against R1 

with correlat ion coefficient r = 0.964 and the s tandard  error s = 1.265. The com- 
puted entropies  and  the difference between the experimental  and the calculated 
entropies are included in Table  4 (the third and  fourth columns). How does this 
result compare  with descript ions based on other topological indices? In  Table 5 we 
collected the best dozen results for regression of the entropy for octane isomers 
using some 40 different topological  descriptors [6]. As we see, the present result is 
not  only the best bu t  it is significantly better than  all other hitherto tested 
molecular  descriptors! This suggests that  path invar iants  based on the R R W  
matrices may  represent  an impor t an t  addi t ion  to the already available l ibrary of 
topological  indices used in mul t ip le  regression analysis of the s t ruc ture-proper ty  
relationship.  
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Table 5. The regression coefficient r and the standard 
error s for the dozen best single variable regressions for 
the entropies of octane isomers (for details on the 
definition of the indices used see [6]) 

Descriptor R S 

Rl 0.964 1.26 
211/2] 0.954 1.40 
x[t] 0.942 1.57 
ID z 0.938 1.61 
IDA 0.936 1.64 
TI 0.931 1.71 
ID 0.926 1.76 
Y 0.919 1.84 
lrD 0.915 1.88 
X 0.913 1.90 
V 0.912 1.91 
1~ 0.906 1.97 
IDn 0.906 1.98 
1/1Z 0.905 1.99 
IDw 0.901 2.02 
EC 0.901 2.02 
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